首页> 外文OA文献 >Hydrogen Sorption Cycling Stability and Microstructure of Single-Walled Carbon Nanotube (SWCNT) Encapsulated Magnesium Hydride
【2h】

Hydrogen Sorption Cycling Stability and Microstructure of Single-Walled Carbon Nanotube (SWCNT) Encapsulated Magnesium Hydride

机译:单壁碳纳米管(SWCNT)包裹的氢化镁的氢吸附循环稳定性和微观结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have examined comilling with unpurified single-walled carbon nanotubes (SWCNTs) as a method to promote hydrogenation/dehydrogenation cycling kinetic stability in nanocrystalline magnesium hydride (MgH2). The synthesized material was a true nanocomposite consisting of MgH2 covered by highly defective SWCNTs coupled to catalytic metal nanoparticles and mixed with amorphous carbon. The nanocomposite was hydrogen sorption cycled at 300 \ub0C using a volumetric Sievert\u2019s type apparatus. Identically milled pure MgH2 was used as a baseline. The microstructure of both materials was analyzed in detail using cryo-stage transmission electron microscopy (TEM) as well as other techniques. The nanocomposite shows markedly improved kinetic performance, both during initial postmilling desorption and during subsequent cycling. Activation energy analysis demonstrates that any catalytic effect due to the metallic nanoparticles is lost during cycling. Improved cycling performance is instead achieved as a result of the carbon allotropes preventing MgH2 particle agglomeration and sintering. Even after 35 absorption/desorption cycles, the SWCNTs remain covering the MgH2 surfaces. Sorption cycling creates a dramatic difference in the particle size distributions between the nanocomposite system and the baseline, whereas the two were nearly identical at the onset of testing. In a separate experiment performed at more aggressive pressure conditions, the nanocomposite received over 100 sorption cycles with fairly minor kinetic degradation.
机译:我们已经研究了使用未纯化的单壁碳纳米管(SWCNT)产生的污垢作为促进纳米晶氢化镁(MgH2)中氢化/脱氢循环动力学稳定性的方法。合成的材料是真正的纳米复合材料,由被高缺陷SWCNT覆盖的MgH2偶联至催化金属纳米颗粒并与无定形碳混合而成。使用体积Sievert型设备将纳米复合材料在300℃下进行氢吸附循环。相同研磨的纯MgH2被用作基线。两种材料的微观结构都使用了低温阶段透射电子显微镜(TEM)以及其他技术进行了详细分析。在最初的研磨后解吸过程中和随后的循环过程中,纳米复合材料均显示出显着改善的动力学性能。活化能分析表明,由于金属纳米颗粒而导致的任何催化作用在循环过程中都会丢失。碳同素异形体可防止MgH2颗粒团聚和烧结,从而可提高循环性能。即使经过35个吸收/解吸循环,SWCNT仍会覆盖MgH2表面。吸附循环在纳米复合材料系统和基线之间的粒径分布上产生了巨大差异,而在测试开始时两者几乎相同。在更具侵略性的压力条件下进行的另一项实验中,纳米复合材料经历了100个以上的吸附循环,动力学降解较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号